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contract theory



the principal–agent model

Noteworthy papers: Holmström and Milgrom [1987], Sannikov [2008].
▶ Analyse interactions between economic agents, in particular with
asymmetric information.

The Principal (she) initiates a contract for a period [0, T].
The Agent (he) accepts or not the contract proposed by the Principal.

The Principal must suggest an optimal contract: maximises her utility,
and that the Agent will accept (reservation utility).

Asymmetries of information:
Moral Hazard: the Agent’s behaviour is not observable by the Principal
(Second–Best).
Adverse Selection: a characteristic of the Agent is unknown by the
Principal (Third–Best).
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moral hazard in continuous–time

Output process: Stochastic process X with dynamic, for t ∈ [0, T]:

dXt = αtdt+ σtdWt.

Effort: the Agent controls X through the drift α.

Moral Hazard: the Principal only observes X in continuous–time.
▶ The contract (terminal payment) ξ can only be indexed on X.
▶ The optimal form of contracts for the Agent is (see Sannikov [2008]):

ξ = ξ0 −
∫ T

0
H(Zs)ds+

∫ T

0
ZsdXs, (1)

where

(i) Z is a payment rate chosen by the Principal;
(ii) H is the Agent’s Hamiltonian.
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principal – mean–field agents



motivation: electricity demand response management

▶ Electricity cannot be stored: supply–demand balance at all times.

Act on the supply side? inflexible (or high–cost) production and ran-
dom renewable energies...

Solution: Demand management, facilitated by the development of
smart meters. Different tariff offers, price signals...

Aïd, Possamaï, and Touzi [2018] – Optimal electricity demand response
contracting with responsiveness incentives: Principal–Agent model
with volatility control to improve the responsiveness of the consumer
to the contract, using the results of Cvitanić, Possamaï, and Touzi
[2018].

Infinity of consumers: Extension of Aïd et al. [2018] to a Mean–Field
of consumers, whose consumption is impacted by a common noise
representing the weather conditions.
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extension to a mean–field of agents

Élie, Hubert, Mastrolia, and Possamaï [2019] – Mean–Field moral haz-
ard for optimal energy demand response management.

Classical MFG framework: all Agents are identical.

▶ Restrict the study to a small consumer, similar to others, who has
a negligible impact on the global consumption: representative Agent.

The output process is the deviation from its usual consumption:

Xt = x0 −
∫ t

0
αs · 1dds+

∫ t

0
σ(βs) · dWs +

∫ t

0
σ◦dW◦

s , t ∈ [0, T]. (2)

where

• W, d−dimensional BM : Agent’s own randomness;
• W◦, 1−dimensional BM: common noise for all Agents;
• α, effort to reduce the mean of his consumption;
• β, effort to reduce the volatility.
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a new form of contract

Aïd et al. [2018]: Contract indexed on X, by a parameter Z, and its
quadratic variation ⟨X⟩, by a parameter Γ.
▶ The Principal chooses (Z, Γ) to maximise her profit.

Intuition: In the MF case, the Principal can benefit from the additional
information she has.
▶ She can compute the conditional law with respect to the common
noise of others’ deviation, denoted µ̂, and index the contract on it:

ξT = ξ0 −
∫ T

0
H(Xs, ζs, α̂⋆

s , µ̂s)ds +
∫ T

0
ZsdXs +

1
2

∫ t

0

(
Γs + RAZ2s

)
d⟨X⟩s

+

∫ T

0
f
(
µ̂s, Zs, Zµs

)
ds

.

Main result: (i) equilibrium between Agents⇔ Mean–Field 2BSDE; (ii)
this form of contracts, where the Principal choose ζ := (Z, Γ, Zµ), is
optimal; (iii) Principal’s problem ⇔ McKean–Vlasov SDE.
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other applications



hierarchical principal–agent problem

▶ The Principal (P) contracts with the Managers (M) who in turn, con-
tracts with the Agents (A).

P

M (1) . . . M (m)

. . .A (1, 1) . . . A (1,n1) A (m, 1) . . . A (m,nm)

ξ1 ξm

ξ1,1 ξ1,n1 ξm,1 ξm,nm

▶ Extend the one–period model with drift control of Sung [2015], to a
continuous–time model with drift and volatility control.
Main result: even without volatility control by the Agents, it is not suf-
ficient to limit the study to linear contracts since the Managers control
the volatility of the ”state variable” by choosing Agents’ contracts.
▶ Use of 2BSDEs.
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epidemic control: individual point of view

▶ Élie, Hubert, and Turinici [2020].

Susceptible Infected Recovery
βtStItdt γItdt

Figure: SIR model

▶ Dynamic of an epidemic SIR model:
dSt = −βtStItdt,
dIt = (βtStIt + γIt)dt,
dRt = γItdt,

for t ∈ [0, T].

▶ Interactions between individuals ⇒ Spread of the virus, modelised
by the rate β.
▶ Each individual can choose to decrease his social interactions with
others (decrease β) ⇔ Lockdown.
▶ Nash between individuals β⋆, different from societal optimum.
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comparison with societal optimum
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epidemic control: government’s point of view

▶ Joint work with Thibaut Mastrolia, Dylan Possamaï, and Xavier Warin.

▶ How to incentivise the population to lockdown?

▶ Epidemic SIR model, stochastic version.
dSt = −βtStItdt+ σStItdWt,

dIt = (βtSt + γ)Itdt− σStItdWt,

dRt = γItdt
for t ∈ [0, T].

▶ The government can offer a contract ξ, indexed on S, I and/or R, to
incentivise the population to lockdown.
▶ The optimal form of contract satisfies

U(−ξ) = Y0 −
∫ T

0
H(St, It, Zt)dt−

∫ T

0
ZtdIt.
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